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Population demography is central to fundamental ecology and for
predicting range shifts, decline of threatened species, and spread
of invasive organisms. There is a mismatch between most de-
mographic work, carried out on few populations and at local scales,
and the need to predict dynamics at landscape and regional scales.
Inspired by concepts from landscape ecology and Markowitz’s port-
folio theory, we develop a landscape portfolio platform to quantify
and predict the behavior of multiple populations, scaling up the
expectation and variance of the dynamics of an ensemble of pop-
ulations. We illustrate this framework using a 35-y time series on
gypsymoth populations. We demonstrate the demography accumu-
lation curve in which the collective growth of the ensemble depends
on the number of local populations included, highlighting a mini-
mum but adequate number of populations for both regional-scale
persistence and cross-scale inference. The attainable set of land-
scape portfolios further suggests tools for regional population man-
agement for both threatened and invasive species.

population demography | scale dependence | growth inflation |
volatility reduction | demography accumulation curve

Population demography describes composite features of scal-
ing up from individuals, each with different risks, to pop-

ulations. It has been studied since Malthus (1). However, it is not
straightforward to predict the dynamics of regional ensembles of
populations from single populations; scaling up may require a
different set of conceptual tools (2). Although most demographic
studies of natural populations of plants and animals are con-
ducted at local scales and on few (three or fewer) populations
(3), we are often concerned about the behavior of ensembles of
populations. When appropriately scaled-up to population en-
sembles, demography is potentially valuable for understanding
many fundamental and applied problems, including risk of re-
gional extinction, biological invasions, pathogen spread, fisheries
management, and as the foundation for natural selection. To this
end, the concept of landscape demography has been introduced
to emphasize the collective behavior of population ensembles
across spatial scales (4).
Landscape demography is a generalization of the special case of

metapopulation theory and conceptually brings together several
approaches and theoretical lines of work. In classic meta-
population theory (5, 6), population persistence at the regional
or landscape scale is ensured through the dynamic colonization–
extinction balance from recolonization of suitable sites. In scale
transition theory (7, 8), with the full knowledge of recruitment
and dispersal of all populations over an infinite landscape, the
landscape-level multiplicative growth rate can be partitioned
into the average growth rate of local populations plus the
growth-density covariance (see also ref. 9). The landscape-level
persistence can thus be elevated by having positive growth-
density covariance. Under similar premises, landscape-level
growth rate can be further inflated by affecting the growth-

density covariance from temporal fluctuation and autocorre-
lation in local population growth rate driven by environmental
noise (9–11). Such red noise could further drive intermittent
rarity of population dynamics (12) and facilitate invasive es-
tablishment (13). Moreover, through connecting local sto-
chastic processes via redistributing individuals, system-level
persistence and growth can be achieved (14, 15) through sto-
chastic resonance (16–18). By highlighting the roles of positive
growth-density covariance, temporal variability and red noise,
redistribution, and spatial heterogeneity these stochastic met-
apopulation and demographic theories have laid the founda-
tion for connecting local- to landscape-level demography.
Our goal here is to extend this theory by scaling up de-

mography by continuously adding local populations into the
landscape ensemble, even when dispersal and the nonlinear
population growth function are not explicitly quantified and
when some populations are ignored due to limited sampling ef-
fort. Economic portfolio theory provides such a framework that
can be extended for analyzing the dynamics of ensembles of
populations. With this approach dispersal may be incorporated,
but the ensemble can be a set of populations without coloniza-
tion between them, rather than a set of connected subpopula-
tions (as in metapopulation ecology). In this framework, we
start with three quantities that are essential for analyzing the
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stochastic demography of population ensembles (19): means,
variances, and covariances of local population change rates.
Note that the choice of specific metrics of population change
rates assume the normality or at least symmetry of measured rate
distributions around the mean (discussed below). The first two
are indicators of population viability that can be driven by many
environmental and ecological factors, such as habitat quality,
disturbance, and biotic interactions including density dependence,
interspecific competition, and predation. These two quantities
have also been highlighted in other demographic theories. The
covariance measures synchrony between populations (20) and
reflects a range of drivers, including the Moran effect of broad-
scale environmental forcing (21–23), cross-trophic or intraspecific
biotic interactions (24, 25), distance decay of similarity (26–28), and
cross-population migration (29–31). The role of the covariance
between local population change rates has not been fully explored
in previous demographic theories. Those specific aspects of
population demography that have been highlighted in previous
theories, such as the growth-density covariance and temporal
autocorrelation, are considered later in an expanded formulation
of our approach. To transform our understanding of how local
demography contributes to the collective behavior of regional
ensembles, landscape demography also needs to formulate how
these quantities depend on the number of local populations in
the ensemble, so that drivers of the demography of the ensemble
can be sought and inferences made across relevant scales.
Fortunately, we can borrow from economic theory to address

this problem. Models to predict rates of change and minimize
volatility for portfolios of assets are well established in economic
theory, employing portfolio diversification and constrained op-
timization to identify financial strategies for ensembles of indi-
vidual investments (32, 33). The dynamics of both biological
populations and investment portfolios typically are characterized
by substantial fluctuations of individual units (populations and
assets) but smaller fluctuations for ensembles of those units (34,
35). We approach scaling from single populations to an ensemble
by borrowing methods for portfolio diversification across pop-
ulations from these investment models (32, 33). Modern port-
folio theory is based on the return, R= ðnt+1 − ntÞ=nt, with nt the
investment size at time t. However, the return for biological
population size n is often highly nonnormal, as is the multipli-
cative growth rate, λ= nt+1=nt (10), making the mean and vari-
ance invalid metrics for the centroid and spread of return (see
the gypsy moth example below). Instead, the relative growth rate
(RGR), r= lnðnt+1=ntÞ is approximately normal. In what follows,
we only address the case for positive population size (nt > 0). In
the event of a local extinction followed by recolonization, the
newly established population is considered to be a new local
population in the ensemble.
We propose a platform of landscape demography inspired by

modern portfolio theory but using RGR rather than return R or
multiplicative growth rate λ. This permits the study of the de-
mography of an ensemble of populations while accounting for the
potential interconnections between populations that reflect mul-
tiple demographic and environmental factors including not only
dispersal but also shared environmental and biotic forcing. We
first advance models for this platform, emphasizing the connec-
tions that allow scaling up from local dynamics to the collective
behavior of many populations at landscape and regional scales.
We then demonstrate this platform by scaling up the demography
of gypsy moths (Lymantria dispar) in the northeastern United
States by pooling populations into larger ensembles.

Analytical Results
Let there be z populations in the landscape. The landscape
portfolio is the weight vector of populations: ~w= fw1,w2, ...wzg
subject to wi ≥ 0 and

P
iwi = 1, with wi = ni=nU, where nU is the

sum of population sizes. Generally, ni follows a lognormal dis-
tribution (10) and thus the RGR, ri, a Gaussian, with expectation
μi, variance σ2i , and σij = covðri, rjÞ. The ensemble RGR is

rU = ln

 X
i

eriwi

!
. [1]

Following ref. 15, we first present the formulae of landscape
demographies for constant weights (called the rebalancing strat-
egy in economic theory) and then extend the formulae later to
connect with other stochastic demography theories. Nonetheless,
the possible demographies of landscape ensembles are addressed
here by exploring the entire feasible range of weights. To find the
expectation (μU) and variance (σ2U) of the ensemble (U) RGR,
let ∇=

P
ie
μi + σ2i =2wi and Δ2 =

P
i
P

je
μi + σ2i =2eμj + σ2j =2ðeσij − 1Þwiwj;

we then have

μU = ln
�
∇2
.�

∇2 +Δ2�1=2�
σ2U = ln

��
∇2 +Δ2��∇2

�
.

[2]

Two landscape ensembles are also synchronized to some extent
due to covarying populations (Eqs. S4 and S12).
The attainable set is the set of all possible landscape portfo-

lios. It is useful to describe the attainable set by its projection in
the growth-volatility ðμU , σ2UÞ plane; its boundaries (Fig. 1A)
describe demographies for combinations of two or more pop-
ulations, with single-population portfolios at the ends of each
two-population curve. The top-left boundary (Fig. 1A) is of

A B

C D

Fig. 1. Expectation and variance of RGR for an ensemble of three pop-
ulations. Red, green, and black curves: attainable sets for combinations of
two populations (wi +wj = 1). Blue mesh: attainable sets for combinations of
three populations (w1 + w2 + w3 = 1). Covariances between populations are
the same in each plot and are calculated as the correlation (ρ) times the SDs
of the two populations (σij = ρσiσj). (A) ρ = −0.5; (B) ρ = 0 (independent);
(C) ρ = 0.5; (D) ρ = 1 (perfectly synchronized). The efficient frontier is cal-
culated by minimizing x(σU2/2) − (1 − x)μU for specific x values; x = 0 for the
maximum growth portfolio (green dot in A), x = 1 for the minimum variance
portfolio (black dot in A), and x = 1/2 for the portfolio on the efficient
frontier where the attainable set is stretched the most along the ensemble
shifting direction (purple dot in A).
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particular interest as it represents portfolios with minimum
variance for a given ensemble RGR, or equivalently maximum
RGR given a level of volatility. In economics, this represents
ideal portfolios of investments, and is thus called the efficient
frontier (32, 34). In landscape demography it represents en-
sembles of populations with minimum collective risk from
reduced volatility and maximum potential for regional-scale
persistence from growth inflation.
Ensemble portfolios within the attainable set often have re-

duced volatility and inflated RGR (shifting toward the efficient
frontier in Fig. 1). A paradoxical result is that the expected RGR
for the ensemble as a whole, μU, can be positive even with all
negative local RGRs (Fig. 1 A and B). More generally, growth
inflation occurs when the expected ensemble RGR is greater
than the weighted arithmetic mean of local RGRs. Portfolios
including many populations generally also have smaller σ2U than
those including a few. Covariance between the RGRs of pop-
ulations, σij, is critical in causing volatility reduction and growth
inflation; this can be enhanced by negative covariances (compare
Fig. 1A with Fig. 1B), but positive covariances can dampen this
effect or even exacerbate volatility (Fig. 1 C and D); the latter
was an important factor that precipitated the Great Recession of
2008 (36).
Volatility reduction and growth inflation in landscape de-

mography result from a tilted portfolio effect. First, due to
skewed distributions of ni, the growth (μU) and volatility (σ2U) of a
landscape ensemble covary with each other (Eq. 2), tilting the
efficient frontier from the left corner of the growth-volatility
ðμU , σ2UÞ plane in classic portfolio theory to the top-left corner
in a landscape portfolio (Fig. 1), permitting growth inflation.
This differs from the classic portfolio theory of investment,
where the two quantities are independent and thus the portfolio
effect refers only to volatility reduction (32, 33). Second, the
covariance of RGRs between local populations determines the
degree to which the ensemble demographies are shifting toward
the efficient frontier, analogous to classic portfolio theory.
Volatility reduction and growth inflation can be severely

damped or even reversed if there are large discrepancies in σ2i
(compare Fig. 1B with Fig. 2). In a two-population ensemble
(Fig. S1), the effect of growth inflation and volatility reduction
reverse when d≡ σ22 − σ21 > dp for some threshold dp. The exis-
tence of this threshold confines the portfolio effect of volatility
reduction and growth inflation. This is because (with increasing
d) the denominator of the function for μU (Eq. 2) grows faster
than its numerator, while the denominator of the function for σ2U
grows more slowly than its numerator, eventually reversing the
portfolio effect. Covariance also plays a role, with highly synchronized

dynamics having small dp and weak effects on volatility reduction
and growth inflation (Fig. S1).

Connecting Demographic Theories
This framework of landscape demography can be connected to
stochastic demography theories. After relaxing the assumption of
constant weights and allowing temporal autocorrelation of ri, we
have the expected regional RGR of the ensemble (Supporting
Information):

μU = ln

 
α ·
X
i

�
covðλi,wiÞ+ �wi · exp

�
μi +

1+ βi
1− βi

σ2i
2

��!
. [3]

This expected ensemble RGR can explain the growth inflation
from existing demographic theories. First, α represents intertwined
μU and σ2U, as well as the temporal autocorrelation of rU, reflecting
the tilted portfolio effect (Supporting Information). Second, a
positive covariance between multiplicative growth rate and pop-
ulation weight, covðλi,wiÞ> 0, can add to ensemble growth as
highlighted in scale transition theory (7, 8). Third, connecting
multiple random variables (�wi and σ2i ) can lead to elevated growth
of the combined variable through both the tilted portfolio effect
and stochastic resonance (16, 17), with the extreme case of
a Parrondo game. Finally, positive temporal autocorrelation
ð0< βi < 1Þ in stochastic growth rate can further enhance regional
growth via the inflation effect of red environmental noise (9, 10,
13). All these quantities are interconnected in Eq. 3 to enhance
the persistence and growth of landscape ensembles. This ex-
panded framework of landscape demography could contribute to
the eventual design of a unified platform for multisite population
viability analysis and regional inference (19, 37, 38).

Demography Accumulation Curve
We define the demography accumulation curve (DAC) as the
parametric forms of rU and σ2U with an increasing number of local
populations in the ensemble (z); see Supporting Information for
an example (Fig. S2). In practice, the DAC can be estimated as
the rarefaction curve of ensemble demographies for a given
number of randomly selected nonoverlapping local populations.
The DAC serves two purposes. First, it can serve to examine the
adequacy of a regional survey; that is, whether a sufficient
number of local populations have been included in the sampled
ensemble so that the DAC starts to approach its asymptote, if
one exists. Regional inference (e.g., whether the species is
expanding or contracting at regional scales) and cross-region
comparison can be made on asymptotes of landscape demogra-
phies or rarefied values under equal survey coverage. Second,
the DAC implies changes in behavior of a landscape ensemble at
different ensemble sizes. Persistence and survival at regional
scales require a minimum number of local populations, and this
minimum threshold of ensemble size is related to multiple de-
mographic quantities (Eq. 3): Negative covariance of growth
(σij < 0), positive growth-density covariance (covðλi,wiÞ> 0), red
environmental noise ð0< βi < 1Þ, and large fluctuations (large σ2i ;
Fig. S2) can reduce this threshold of regional persistence.
Management could target these quantities to ensure that the
ensemble size for threatened (invasive) species is above (below)
the threshold.

The DAC of Gypsy Moth
The level of defoliation from the forest pest L. dispar, used as a
proxy of population size, has been intensively surveyed in
northeastern United States since 1975 (39–41). We analyzed
annual time series (1975–2010) for 84 64 × 64-km quadrats based
on the USDA Forest Service dataset, covering ca. 350,000 km2

(Fig. S3). Evidence that the RGR is an unbiased metric of

A B

Fig. 2. Expectation and variance of RGR for the ensemble with increasing
discrepancy among variances. Plots A and B are the same as Fig.1B (three
populations are independent from each other, ρ = 0), but with increasing
variance for population 3. Others are the same as in Fig. 1. See Fig. S1 for
more explicit effect of variance discrepancy on ensemble demography.
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population demography for L. dispar is provided in Fig. 3, with
the notable statistical artifact of Taylor’s power law from a
skewed size distribution (42). We were able to calculate means
and (co)variances of local population RGRs (Dataset S1) for
38 quadrats (Figs. S4 and S5). The DAC of μU demonstrated a
clear upward trend with an increasing number of included pop-
ulations, shifting from negative to positive at z = 30 (Fig. 4A),
indicating growth inflation. The DAC of σ2U eventually declined
when z > 15 (Fig. 4B), indicating volatility reduction through
portfolio diversification. The annual ensemble RGRs (blue lines
in Fig. 4C) fluctuated strongly within a belt perpendicular to the
efficient frontier, showing that the annual ensemble RGR and its
variance are negatively correlated (as expected in a system prone
to massive outbreaks). The DACs of gypsy moths point to a
minimum of 30 local populations to be monitored for mean-
ingful, qualitatively correct, regional inference.

Conclusions
The theory developed here provides tools for estimating en-
semble mean RGRs and their variances, which may change
nonlinearly across scales (i.e., the DAC). Useful extensions of
this theory may include the role of nonstationarity, density de-
pendence, and spatial autocorrelation in time series. The gypsy
moth example suggests a strategic approach for invasive species:
If we can drive ensembles below the sizes at which growth in-
flation and/or volatility reduction operate, we may be able to
achieve regional control; for threatened species, there can be a
critical threshold for the number of populations below which
regional extinction is likely. These results point to mechanisms of
regional persistence that do not follow from local demographic
results and are not possible under classic metapopulation models,

A B

DC

Fig. 3. Features of the population size and demography of the gypsy moth
in the northeast United States. (A) The log-transformed relationship be-
tween the temporal expectation and variance of population size, with each
point representing a local population, all located within a thin belt around a
power law. (B) The relationship between the temporal expectation and
variance of log population size, showing the power law in A to be artificial
due to the skewed distribution of population size. (C) The log-transformed
relationship between expectation and variance of the return, showing the
distribution within a narrow belt. (D) The relationship between the expec-
tation and variance of the RGR, justifying its use as an unbiased metric of
population demography.

A

B

C

Fig. 4. Landscape demography and DACs of 38 gypsy moth populations.
Accumulation curves for expectation (A) and variance (B) of ensemble RGRs
as a function of the number of included local populations (z). Red lines:
averages of 1,000 rarefaction curves. (C) Black dots: expectation and vari-
ance of the RGR for specific populations (Fig. 3 and Dataset S1). Blue lines:
demographic trajectory for the ensemble. Blue curve: efficient frontier for
the ensemble, calculated as in Fig. 1 (Dataset S2).
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where regional persistence results from a dynamic colonization–
extinction balance. Persistence in a landscape portfolio can be en-
hanced through inflated growth and reduced volatility largely due to
the tilted portfolio effect for covarying populations with comparable
magnitudes of variability, which is distinct from existing stochastic
demography theories that focus on the roles of growth-density co-
variance, temporal autocorrelation, and stochastic resonance. Fi-
nally, the attainable set of landscape portfolios and the DAC of
ensemble mean and variance suggest tools for regional population
management for both threatened and invasive species through
changing the relative weights and other demographic quantities of,
as well as the covariance between, target populations and pin-
pointing the minimum number of populations for reliable regional-
scale decision making.

Materials and Methods
We used population time series to calculate annual RGRs of local pop-
ulations and their means, variances, and covariances; expected ensemble

RGR and its variance are found from these using properties of the log-
normal distribution. Plotting the expected ensemble RGR and its variance,
for all possible relative weights of local populations, permits visualization
of the possible ensemble growth rate and its variance and identification of
themaximum RGR given a level of volatility. We derive a general expression
for the expected ensemble RGR, permitting connections to other theories
of stochastic demography. We introduce the DAC, the expectation and
variance of ensemble RGR as a function of the number of local populations.
The DAC, as estimated with rarefaction curves from gypsy moth pop-
ulations, permits inference on the action of growth inflation and volatility
reduction.
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